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Problem statement. The quantity of calculations
for solving specific scientific and technical problems
largely depends on the organization of these calcula-
tions [1; 2]. At the same time, one of the most effec-
tive methods of organizing computations is the tran-
sition from the initial representation of information to
a form in which operating with data becomes more
productive.

The idea of a transition from one object space to
another is fruitful in the field of hypercomplex cal-
culus [3-6]. This is facilitated by the fact that among
the set of hypercomplex number systems (HNS) of
fixed dimension, there are subsets of systems that are
isomorphic to each other. The two HNS are isomor-
phic if there is a one-to-one correspondence between
them, that the image of the operation on the operands
in one HNS is equal to the operation on the images of
the same operands in another HNS [7]. This means
that any computation can be done in any of the iso-
morphic HNS. The result will be the same, taking into
account the translation of data and results from one
system to another.

Two isomorphic HNS are similar to each other
relative to their defining operations. But there may
be differences, which are very interesting for devel-
opers of rational computing processes. The fact is
that tables of multiplication of isomorphic HNS can
vary greatly in the number of zero cells: in a strongly
filled HNS there are few zeros, weakly filled — a lot.
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And, as a consequence, operating with hypercomplex
numbers in a strongly-filled emergency is coexten-
sive with the need to perform more operations on real
numbers than in a weakly filled [8].

Experience in the development of mathematical
models with the application of HNS shows the need
to apply both types of HNS: highly filled — to identify
models, weakly filled — to intensify the very process
of modeling [9; 10; 14]. That is, for the successful
use of HNS methods in mathematical modeling, it is
necessary to have a set of pairs of isomorphic HNS of
different dimensions and types.

A significant obstacle here is the difficulty of
establishing isomorphism (or lack thereof) of two
HNS. Proceeding from this, the goal of this work is
determined.

Purpose of the article. The creation of such algo-
rithms for solving systems of quadratic isomorphism
equations for the pair HNS, which would greatly sim-
plify their solution. The goal is achieved by using rep-
resentations of exponential functions in these HNS.

The equations system of HNS isomorphism.
Hypercomplex number systems 7, and 7, are called
isomorphic ( I, = I',) if there exists a one-to-one map-
ping L of space I, to space I, such that the follow-
ing properties hold:

L(a+b)=L(a)+L(b), (1)
L(axb)=L(a)x L(b), 2)
where a,b eI, L(a), L(b)eT,.
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The operations of multiplication in the left and
right parts of (2) differ from each other in accordance
with the structure constants 7, and 7, .

It follows from (2) that I, and I, are linear
spaces with basese ={ ¢,e,,....e,} and f ={ f.f,...f,}
, respectively, and therefore one can establish a one-
to-one linear correspondence between them with the

real matrix A [7; 8]:

e =a i tanh+..+a,f,
62:a2|f1 +a22fz+...+a2nfn (3)
en = anlf; + an2‘f2 + + armﬁr .

In this case, the determinant of the matrix 4 is dif-
ferent from zero|4| T 0, since the transformation (3)
must have an inverse transformation A™ .

As follows from the theory of linear spaces, for
each pair of linearly independent bases one can find a
one-to-one linear transformation (3), which takes one
basis to another and vice versa. But the fulfillment
simultaneously with the requirement (1) and require-
ment (2), which reduces to a system of nonlinear
algebraic equations, is not always possible.

If a= za,e,,b sze:aab ZZZ

i=1 i=1 k=1

then L(ab)= L(zzza,bﬂ/yek] ZZZM
i=1 i=1 k i=l j=1k
Zakv s

Vy'ek 5

But from (3) L(e,)

Therefore
L(Clb) = Z Ot,(sj/,fa,-b,-f (4)
i=1 i=1 k=1 s=1
On the other side
L(a)x L(b)=Y aL( €)Y bL(e;)=
i=1 J=1
= z aya.fy Oc/k'bjfY =
i=1 k=1 J=1 s=1 (5)
= Z Z alkaJSYk:albjf

Equating the expressions in the right-hand sides of
equations (4) and (5) foridentical ones a;b,f, , we obtain
nonlinear algebraic equations from»’ unknowna, .

Z z aksYl? = Z Z z aikajsy/:: ; (6)

k=1 s=1 k=1 s=1 r=1
This system is overridden. It always has a trivial

solution a; =0; ij=1..,n

But non-trivial real solutions can not exist if the
condition |A| T 0 is satisfied. Therefore, if there exists
at least one non-trivial real solution, then these two
HNS 7, and 7, are isomorphic, if there are no such
solutions, then they are not isomorphic.

The solution of such systems causes considerable
difficulties even when using such powerful systems

ij,kel,..,n

of analytical computations as MAPLE, MATHE-
MATICA etc. When using the MAPLE system, sys-
tems of equations for n = 3 are successfully solved.
But even at n = 4, the solution time increases to many
hours and in many cases it was not possible to obtain
a solution at all.

In view of the foregoing, studies in the direction
of developing such methods for establishing isomor-
phism between HNS that do not require the solution
of quadratic systems of type (6) are of great relevance,
or at least greatly simplify their solution.

As our studies have shown, significant progress in
this direction can be achieved by applying representa-
tions of exponential functions in HNS.

Representations of exponential functions in
HNS. We consider the main features of one of the
universal methods for constructing an exponential
with the help of an associated system of linear differ-
ential equations [4, p. 11-13].

Let and hypercomplex numbers:

X = i e M=Y me,, (7)

where X = (x,...x,) , M =(m,...m) — vector

columns composed of components of hypercomplex
numbers.

The representation of the exponent in HNS 7' (e,n)

from the number M e I (e,n) that we denote is a par-

ticular solution of the ordinary hypercomplex linear

differential equation
X =Mx, (8)
with the initial condition Exp(0)=¢, where
I'(e,n) — HNS of dimension » with a basis e and
a unit element ¢ [4]. The differentiation in (8) is
assumed by the scalar argument.

To construct a solution of the hypercomplex linear
differential equation (8), it must be represented in vec-
tor-matrix form. In this case X = (x,,...,%,)" and the col-
umn vector obtained from the hypercomplex number
can be represented in the form of a matrix product of
some matrix with dimensions whose elements are lin-
ear combinations of the components of the hypercom-
plex number by the column vector , that is .

Then the hypercomplex equation (8) becomes a
system of »n equations, which is called the associated
system of linear differential equations

X=0X.(9

It is necessary to find the characteristic numbers
Ayseees2, Of the matrix e , that is, to solve the charac-
teristic equation e - 2E =0. Thus, the characteristic
numbers A,...,A, will depend on the hypercomplex
number M .

After this, it is necessary to construct a general
solution, depending on the »* arbitrary constants, of
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which #* —n are linearly dependent on n free vari-
ables. To obtain these linear dependences, it is nec-
essary to solve a system of linear equations [1; 3].
After this, one can obtain general solutions (9), which
depend on narbitrary constants X (,C,...,C,). The
values of arbitrary constants are established using the
initial condition Exp(0)=e&. The components of the
vector-column X —solution and are components of
the exponent of the hypercomplex number M
Exp(M):Zn:)?ie,. (10)

The method of constructﬁig representations of an
exponential from a hypercomplex variable with the
help of an associated system of linear differential
equations is fairly easy to formalize for the construc-
tion of algorithms and programs in systems of sym-
bolic computations.

Normalized form of the exponential representa-
tion. In the general case, the set of roots A,,...,4, of
the characteristic equation e —AE =0 consists of »
roots and can be divided into the following subsets:

1. A subset of single real roots 2, € R.

In the exponential representation, they correspond
to terms of the form

x, =x -e =Cee,.

2. A subset of conjugate pairs of complex roots
Aisiy = Z eC.

Usually, when solving systems of linear differ-
ential equations for a pair of complex conjugate
roots, the particular solution is taken in the form
x = e®"(C cos(Im(4)1) + Cysin(Im(4)7)). In  this
paper, Euler’s formula will not be used to write the
solution, as will the representation of the real expo-
nential in terms of hyperbolic functions e’ = ch¢ + sh¢
, since this greatly complicates the structure of the rep-
resentation formula and makes it difficult to analyze
it. Instead, for a pair of complex-conjugate roots, the
components of the representation are written as two

X = ;1 ¢, =Cele,; Xy = Xin - € = 6’ezei+1 >

but arbitrary constants are no longer real, but com-
plex.

3. A subset of real multiple roots.

Suppose that the multiplicity of one of the collec-
tions of real multiple roots is s

A = iy = ey

Then, as follows from the theory of linear differ-
ential equations, this set of roots will correspond to s
components of a general solution of the form

X, =X =(P/+ P +..+P/)e"e, ; j=1..9,
where P/ — polynomial of degree k& in the varia-
bles m,,...,m,. The form of these polynomials is deter-
mined from the defining equation of the associated
system of linear differential equations.

= Xi+j€;

i+j
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4. A subset of multiple pairs of complex-conjugate
roots.

Suppose that the multiplicity of one of the sets of
multiple pairs of complex conjugate roots is equal to
s. Then all in this set will be the 2s roots

A = iz = oo = Aigg s Ay = oo = higg = Aiat.

And this set of roots will correspond to 2s compo-

nents of the general solution of the form

—xe —(P/+ P i) e"e
xi+j—x,+,e,.+j—(l’0 + P, +...+Ps)e ‘e,

i+j o

X,

eyt = Xiej 1€, = (Pé + P4t Ff) e, s
j=13,.25-1"

Here there will already be polynomials with com-
plex coefficients.

Thus, the representation of the exponential will rep-
resent the sum of the » summands, each of which is a
monomial, for which in the first two cases there are three
factors: a real or complex arbitrary constant, an expo-
nential of the real or complex characteristic root, and a
basic element. In the third and fourth cases there are four
factors. To the three previous factors we add a polyno-
mial of the (s — 1) power with real or complex variables.
Such a form of the representation of an exponential will
be called the normalized form of the representation.

The action of the isomorphism operator on the rep-
resentation of the exponent. The isomorphism of two
HNS means the existence of such a linear transforma-
tion of bases whose determinant is not equal to zero, that
for operations of addition and multiplication the image
of the result of these operations is equal to the result of
the operation on operands. Therefore, any expression
with a finite number of hypercomplex operations is
transformed by the same linear transformation.

The representation of an exponential in terms of a
power series contains a countable number of opera-
tions. However, in this case, as will be shown below,
an isomorphic transformation of the representation of
an exponent from a number in one HNS will lead to a
representation of the exponent from the image of this
number in another

Let two isomorphic HNS 7 (e,n) = I, (f,n) and a
linear isomorphic transformation L

Iy (en) = I, (fn), (11)

Le, =>1.f; k=1l..n. (12)
The number X :FE xe e I’ (e,n) in the transition
to the system I, (f,4) with the L isomorphism is
transformed as follows:

X =xie +x0+..+xe, < X (L fi + 105+ +1,0,)+

+X; (lzlfl thyfy + et Iann) Tt X, (lnlfl tlhpfo + ot lnnfn) = (13)

=(xdy + Xk + o+ X L) fo+ (0l + Xy + o+ x,0,) fr +

b i Xobn 4 %) fy = W+t v Sy € (o),
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(14)

Vi =xh, + 0L, + ...+ x,]

n°ni *

That
Y=0r"X, (15)
the components of the hypercomplex number
Y e I, (f,n) (column vector Y ) are obtained by mul-
tiplying the column vector X from the left by the
trans-rotated matrix of the isomorphic transformation
operator L.

If we apply the linear transformation of the iso-
morphism L to the exponent of the hypercomplex
number X =) xe, eI (e,n), we get the exponential
of the hypercomplex number Y e I, (f,n), which is
the image of the number X :

v Yk L = yk

Exp(X)= el Exp(Y)eI,(f.n).(16)

Hence, sulgjecfing “an isomorphic transformation
to an exponent in one HNS, one can obtain an expo-
nent in isomorphic HNS from image numbers. The
same can be said about representations of exponen-
tials, since their construction with respect to a power
series gives a unique representation.

We state the main result: if there are two isomor-
phic systems (11) and an isomorphism operator (12),
then an isomorphic transformation of the representa-
tion of an exponent in one of the HNS is a representa-
tion of the exponent in another HNS.

The set of roots of the characteristic equation and
the isomorphism of HNS. Let us consider the case
when a hypercomplex number system 7 (e,n) is a
direct sum of number systems 7,

r=8r,. (17)

As was shown above, the normalized form of
the representation of its exponential consists of nor-
malized forms of representations of the exponent of
each of the incoming subsystems. That is, the number
of summands is equal to the number of roots of the
characteristic equation, which in turn is equal to the
dimension of the entire HNS. Each term is determined
by one of the roots of the characteristic equation.

We proceed by a linear transformation of a basis
e from a system I (e,n) to a system I, (f,n) isomor-
phic to it. Let us consider how the roots of the char-
acteristic equation, which appear in the summands of
the exponentials of the system I (e,n), change in this
case. Since these roots are functions of the compo-
nents of a number M , they will vary according to
(15), that is, multiplying the column vector M from
the left by the transposed matrix of the isomorphic
transformation operator L". Hence, the roots of the
characteristic equation are linearly transformed. And
this means that their type does not change: different
material roots go into different real, different com-
plex into different complex, identical roots — into

the same, the real can not be transformed into com-
plex ones and vice versa. The characteristic equation
® - AE =0 can be represented in the form

(A=2)(A-2)...(2-2,)=0, (18)

where A, i=1,..,n — roots of the characteristic

equation. Since they depend on the components M

, the linear transformation of them does not change

the type. And this means that the normal form of the

exponent of the system 7, (f,n) has the same struc-
ture as the exponent in the system 77 (e,n).

If the basis of the system I (e,n) is transformed
by another linear transformation, then we obtain a
system I, (g,n) isomorphic I (e,n):

I'y(g.n) =T, (en)

and, under condition the transitivity of the isomor-

phism relation, we obtain
Iy(g.n)=T,(f.n).

Thus, by transforming by any possible non-degen-
erate linear transformations any basis to which a fixed
set of roots of the characteristic equation corresponds,
one can obtain the whole class of isomorphisms. That
is, one and only one set of roots of the characteristic
equation will correspond to this class of isomorphisms.

Unfortunately, the converse is not true. As follows
from [8], different nonisomorphic HNS can corre-
spond to the same set of roots. This can happen when
the roots of the characteristic equation have multiple
real or (or) complex roots of multiplicity greater than
2. Several classes of isomorphisms of indecomposa-
ble HNS correspond to roots of this multiplicity, and
only one isomorphism class of the system of dual
numbers D with the table multiplication:

D e, e
€ € e
e, e, 0

The multiplicities 3 correspond to two classes of
isomorphisms. Tables of multiplication of representa-
tives of classes are given below.

In both HNS, the characteristic equations have
threefold roots .

The multiplicities 4 correspond to 6 isomorphism
classes. Tables of multiplication of representatives of
classes are given below.

I € e e I € e e
€, €, e e €, e, e e;
e, e 0 0 e, |e e 0
e, e, 0 0 e; e; 0 0
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I508 e e ¢ Iple e e e I'sl€ e e; e

€, |€ e e el |€ e e ¢ e, |& e e ¢
e, |e, -e -e -e;ll|le, (&, 0 0 0 ||e, [e, e 0 0
e; |e;e, 0 0fle; (e; 00 0 ||e; [e; 00 0
e, |e,-e; 0 0fle, [e, 00 0 ||e, |&, 0 0 0

Lyl€ e e e ||| Iys]€ e e e T8 e e; ey

e, |€ e e ¢ €, |€ e e ell€ |€ e e ¢
e, |e e 0 01||e, |e e 0 Olle, |e, e e 0
e; |e; 00 0 |l|e; |e; 0 -e Ofle; |&; e 0 0
e, e, 000 |l|le, |e, 0 0 0Ofle, |6, 0 0 0

In HNS, the characteristic equation has a dou-
ble pair of complex conjugate roots: A, ,=m tim,;
A3 4=m xim, The remaining HNS have real fourfold
roots A, ,; ,=m,. Therefore, judging by the character-
istic roots, it can always be asserted that the system
is not isomorphic to any of the other systems and
vice versa. But about isomorphism in the totality
of systems [, I3, L4, I'y5, I',s only according to
the characteristic roots nothing can be said. Their
non-isomorphism was established by directly solv-
ing the systems of equations (6), which took a very
long time.

Practical example. As an example, consider a
pair of HNS: a bicomplex system C®C(e,4) and a
system of quadriplex numbers whose multiplication
tables are given below, K(f,4) and we solve the ques-
tion of their isomorphism.

CO®Cle, |e, |e; |e, K e, le, |e; |e,
e, e, le, [0 |0 e, e e, |e; |es
e, e, |-¢; |0 |0 e, e, |-e; e, |e;
e; 0 [0 |e |es e; e; |e, |-e|-e,
e, 0 [0 |e, |-e e, e

We assume that the isomorphism operator has the
most general form

91=X11f1+X12f2+X13f3+X14f4;
€ =X f1"')(32 fz + X33 f3"')(34 f4;

(19)

€ =X Fy + % f5 + Xpp F 4%,
€ =X fy + X 5 + X5 F 4+ %, 1,

Since the unit elements of these systems are
correspondingly e.q-=¢,te;, €,=f,, then the first
equation of system (19) could be taken e, +e;=f, in
such a way that it would somewhat simplify the
problem. However, to demonstrate the universality
of the method, we will not use this simplifying pre-
liminary information. To solve the problem by the
traditional method, it is necessary to compile a sys-
tem (6), which in this case will consist of 24 quad-
ratic equations [1].
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X221 - X222 ==L 2x%, =0;
X223 - X224 ==L 2X3%,4 =0;
X321 - X322 ==L 2x3%5, =0;
ng - X324 ==L 2%y =0;
Xer = Xgp =1, 20004, = 0;

st - X§4 =1 2X43X44 =0; (20)

Xp1Xqp = XopXgp = Xgq3 XppXgp + %51 X3 = Xy,

XoaXag — XoaXay = Xygs XopzXaq + XpaXgg = Xg45
X Xar = XpoXap = 7Xa1s XppXgy + Xy Xy = —Xg5;
XozXaz = XpaXgs = —Xgz1 KpgXgy + XpuXyg = —Xgq5
Xg1Xa1 — XgoXap = 7 Xp15 XgpXgy + X31Xgp = —Xyp;

KaaXyg = X3pXpg = —Xpzr XgaXgy + XguXg3 = —Xpq-

It should be noted that the relationship between
the unitary elements is taken into account. Otherwise,
the number of equations in the system (20) would
increase to 40. As we see, the equations of the quad-
ratic system (20) have a complicated structure, and
a large combinatoriality arises when solving. As the
solution shows with the help of the system of sym-
bolic computation MAPLE, it has 8 solutions that
satisfy the condition |A| T 0. Therefore, we can con-
clude that the systems C®C(e4) and K(f4) are
also isomorphic.

We give one of the non-degenerate solutions of

system (20):

x,;=1; X, =05 X5 =1

X, =0, x =0; Xy ==l x =0, xu =1 (21)
x;, =0; xp=-I  x;=0;

Xy =—1 x,=-1; x,=0; Xp=1  x,=0.

The direct and inverse isomorphism operators take
the corresponding form:

L_{f.:€1+e3; fi=-e—e;,
fL=—e+e;fi=—e€ +e
1 1 1 1
€ =§f1 —§f4 56, =_§f2 —Efs;
1 1 1 1 (22)
) :Efi +§ﬂ§‘—’4 :Efz _EfS

We solve the same problem by means of rep-
resentations of exponentials. Let M =) me, cC®C
,N =>"n,f, e K.Then, as shown in [1]'

=

Exp(N) = %e”‘ (e cos(n, + ny) + e™ cos(-n, +ny))

fi+ (e sin(n, + ) — e sin(-n, + ny)) f; +

+ (e""4 sin (n, + ny) + €™ sin (-n, + n3))

fi+ (—e’”“ cos(n, +ny) + €™ cos(—n, + n3))ﬂ ].

Exp(M)=e" (cosm, -e +sinm, -e,)+e™ (cosm, -e; +sinm, -e,)
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We translate these representations into a nor-
mal form, for which instead of trigonometric
functions one must substitute their expressions in
terms of exponentials with imaginary exponents
by the Euler formula, and make a rearrangement
of the terms. As a result, we get the same expres-
sions, but with different constants and character-
istic roots

Exp(K)=Ce" +Ce" +Ce™ +Ce™, (23)

where for system C @ C (e, 4)
K=N,C =%(e1 —ie,), G, =%(e3 —ie,),

M= =m+imy, A =, =m+im,,
and for system K (f,4)

K:M,q:%m—%—%—ﬂ%

C=gUh+ih- 1+ 1), (24)

M=vi=m —my+i(m+m),
Ay =vy=my +my +i(my—m).

Already from the fact that the exponent rep-
resentations in both HNS have one type of set of
roots of characteristic equations: two different pairs
of complex roots, allow us to conclude about the iso-
morphism of systems C ® C(e,4) and K (f.4). And
this despite the fact that there is no need to solve a
cumbersome quadratic system (20).

This trip allows one to obtain an explicit form of
linear transformation (19). Let us construct the law of
the transformation of numbers under an isomorphic
transition. From relation

4 L 4
M=% me <) nf=N (25)
=

J=1

and result

4
no=y mx,, i=1..4. (26)
The desired c/(;lnversion L must translate the

representation in the system C @ C(e,4) into a rep-
resentation in the system K (f,4):

1

5 [(e, —ie,)e" + (e, +ie,)e" +

+(ey —iey) e + %(q + ie4)eE]<i>

)
Sqli= -1 £)e +(f+ 4 - £) € +
+(A+ih-1f+ fy)e” +(f1—if2+if3+ﬂ)ev7].

We substitute the transformation (19) into the left-
hand side of (27):

E(XHfl + Xy XSy + XSy i(lefl + Xy + X3Sy + Xou )) et +
1

X h+ X hy + X fs + xSy + i(lef\ +Xpfo + Xy fy + xﬂf4))e“‘ +

(@8

+

2
1

+

(
SO0+ afs + fy + Xfy — 8 (R, + X + Xy + 3ufi)) e
+%(x31f, Xyt Xfs 4 XSy (X fy + Xofs + Xufs + Xufi))€"

+

Since the correspondence (28) must be satisfied
for any values of the roots o« and v, then the coef-
ficients x; can be found by the method of undeter-
mined coefficients with respect to the exponentials.
Here, you can combine these coefficients in differ-
ent ways. In this case, transformations of various
types can be obtained, including degenerate ones
(which do not satisfy the condition |4|| T 0). Degen-
erate transformations indicate an unacceptable way
of combining. Let’s choose a way of combining the
coefficients:

(29)
This correspondence will give a system of 4 equa-
tions that, by the method of undetermined coefficients

relative to the basis elements and the imaginary unit,
will yield a system of 16 very simple linear equations

WSV U SV L, SV SV,

2x;, = 2ixy =1 2x, = 2ixy, = =i 2xp3 = 2ixy; = —i

2x, + 2y, =1 2x, + 2ixy, =i 2X; + 20Xy, =i

2xy = 2ixy =1 2x5, —2ixy, =0 2Xy; — 20X,y = —i

2%y, +2ixy =1 2x5 +2ixy, = =i 2Xyy 4+ 2ix =10

2x,, — 2ixy, = -1
2x,, + 2ix,, =1
2y = 2ix, =1 (30)
2%y, + 2ix,, =1
the solution of which has the form

X :E s X, =0, x3=0, x,=
_ ! X, =0, x L X _1 X,y =
7 » TR T s T 24 (31)
1 1
x31:§» x32:0, x33:0’ x34=§,
1 1
X, =0, x42:—§, x43:§’ Xy =0,
and the isomorphism operator
1 1
en=§(f1*ﬂ)§ ez:§(ﬁ+ﬁ)§
L: , (32

1 1
e, =§(f1 +1i)s e =§(—fz + 1)

which differs from (22). This is because the iso-
morphism operator can not be unique. The implemen-
tation of a particular type of operator depends on the
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method of combining the roots (29) in the compila-
tion of the system (30). In any case, as is easily seen
directly, the resulting operator takes the system of
quadriplex numbers K (f,4) to a system of bicomplex
numbers C @ C(e4).

So, for example,

ee, = g(hirhr - f)=3 (- f)=e

that corresponds to the multiplication table of
the Keli system C ® C(e4). It is also easy to verify
directly with the aid of (26) that the operator (32) sat-
isfies (29).

Conclusions. Thus, the method of investigating
the isomorphism of hypercomplex number systems
by analyzing the representations of exponential func-
tions in these systems with single roots of the char-
acteristic equation of HNS makes it possible to sig-
nificantly improve the efficiency of algorithms for
solving systems of isomorphism equations by elim-
inating the need for solving cumbersome systems of
quadratic equations. At the same time, it should be
noted that the presence of multiple roots of the char-
acteristic equations requires additional studies, which
will be performed in the future.
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MHNOCTPOEHUE D®PEKTUBHBIX AJITOPUTMOB PELLIEHUSA
CHUCTEM YPABHEHUH N30MOP®HU3MA I'MITEPKOMILJIEKCHBIX YHCJIOBBIX CUCTEM
C UCIIOJIB30OBAHUEM SKCITIOHEHIUAJIBHOI'O ITPEICTABJIEHUSA
B cmamuve uccnedyemcs memoo onpeoeneHus u3oMoppuama cunepKomMnieKCHbIX YUCTIO8bIX CUCTEM NymeM aHd-
JU3a NPe0Cmasiienus SKCHOHEHYUIbHBIX QYHKYULL 8 amux cucmemax. Ilokazano, umo maxoui nooxo0 3HA4UMenbHO
nogwvluiaen dQhGeKmueHoCb aIOPUMMOB PeteHUs CUCIeM YpasHeHull 0Jis onpeoeieHus usomMoppuzma.
Knwoueevie cnosa: cunepkomniiekcHvle 4uciogvie CUCMeMbl, U30MOPOUIM, IKCNOHEHYUdTbHbIe DYHKYULU,
peuleHus cucmem ypasHeHut, IKCHOHEHYUAIbHOe NpedcmasieHue.

HOBYJAOBA E@EKTUBHUX AJI'OPUTMIB PO3B’SI3AHHS
CUCTEM PIBHSIHb I30MOP®I3MY I'NIHEPKOMIIVIEKCHUX YNCJIOBUX CUCTEM
I3 BUKOPUCTAHHSM EKCIIOHEHIIAJIBHOI'O ITPE/ICTABJIEHHSI
YV ecmammi 0ocridoicyemuvesi memoo @usHauenHs i30Mophizmy 2inepKOMNIEKCHUX YUPPosux cucmem 3a
00NOMO2010 aHANIZY NPEOCMABNeHH sl eKCHOHEHYIATbHUX QYHKYIU Y yux cucmemax. Ilokazano, wo maxuil nio-
X0 3HAYHO NIOBULYE ePEKMUBHICMb ANCOPUMMIE PO38 S3AHHS CUCEM PIBHSIHD 051 GUSHAUEHHS 130MOpdiamy.
Knrouosi crnosa: cinepxomniexchi yuciogi cucmemu, i30Mophizm, eKCHOHEeHYIAIbHI PYHKYIL, pO36 S3aHH s

cucmem piBH}ZHb, eKCﬂOHeHI/;iaJZbHe npe@cmaeﬂeHHﬂ.
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